
#### schematic



SN55460 . . . J SN75460 . . . J OR N **DUAL-IN-LINE PACKAGE (TOP VIEW)** 



Resistor values shown are nominal

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

TTL gates

| PARAMETER |                                         | TEST CONDITIONS <sup>†</sup> |                                                     | SN55460                 |          |      | SN75460 |                                                  |      |      |                                                  |
|-----------|-----------------------------------------|------------------------------|-----------------------------------------------------|-------------------------|----------|------|---------|--------------------------------------------------|------|------|--------------------------------------------------|
|           |                                         |                              |                                                     | MIN                     | TYP\$    | MAX  | MIN     | TYP                                              | MAX  | UNIT |                                                  |
| VIH       | High-level input voltage                |                              |                                                     |                         | 2        |      |         | 2                                                |      |      | V                                                |
| VIL       | Low-level input voltage                 |                              |                                                     |                         |          |      | 0.8     | <b></b>                                          |      | 0.8  | V                                                |
| VIK       | Input clamp voltage                     |                              | VCC = MIN,                                          | I <sub>1</sub> ≈ -12 mA | <b>†</b> | -1.2 | -1.5    | <del>                                     </del> | -1.2 | -1.5 | V                                                |
| Vон       | High-level output voltage               |                              | V <sub>CC</sub> = MIN,<br>I <sub>OH</sub> = -400 µA |                         | 2.4      | 3.3  |         | 2.4                                              | 3.3  | -    | v                                                |
| VOL       | Low-level output voltage                |                              | V <sub>CC</sub> = MIN,<br>1 <sub>OL</sub> = 16 mA   | V <sub>1H</sub> = 2 V,  |          | 0.25 | 0.5     |                                                  | 0.25 | 0.4  | V                                                |
| 1,        | Input current at maximum                | input A                      | V                                                   | V - 5 5 V               | 1        |      | 1       | <del>                                     </del> |      | 1    | <del>                                     </del> |
| - 1       | input voltage                           | input G                      | V <sub>CC</sub> = MAX,                              | VI - 5.5 V              |          |      | 2       | İ                                                |      | 2    | mA                                               |
| Ήн        | High-level input current                | input A                      | V <sub>CC</sub> ≈ MAX, V <sub>1</sub> = 2.4 V       | 1                       |          | 40   | 1       |                                                  | 40   |      |                                                  |
|           |                                         | input G                      | VCC - MAA,                                          | V1 - 2,4 V              |          |      | 80      |                                                  |      | 80   | μA                                               |
| HL        | Low-level input current input A input G | input A                      | V                                                   |                         |          |      | -1.6    |                                                  |      | -1.6 |                                                  |
| -11       |                                         | input G                      | V <sub>CC</sub> = MAX, V <sub>I</sub> = 0.4 V       | V1 = 0.4 V              |          |      | -3.2    |                                                  |      | -3.2 | mA.                                              |
| los       | Short-circuit output current §          |                              | VCC - MAX                                           |                         | -18      | -35  | -55     | -18                                              | -35  | -55  | mA                                               |
| 1ссн      | Supply current, outputs high            |                              | VCC = MAX,                                          | Vt = 0                  | 1        | 2.8  | 4       |                                                  | 2.8  | 4    | mA                                               |
| CCL       | Supply current, outputs low             |                              | VCC = MAX,                                          | V <sub>1</sub> = 5 V    |          | 7    | 11      | <del> </del>                                     | 7    | 11   | mA                                               |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.  $^{\ddagger}$  All typical values at V<sub>CC</sub>  $^{\Rightarrow}$  5 V, T<sub>A</sub>  $^{\Rightarrow}$  25 C.  $^{\$}$  Not more than one output should be shorted at a time.

## TYPES SN55460, SN75460 DUAL PERIPHERAL POSITIVE-AND DRIVERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) output transistors

| PARAMETER  V(BR)CBO Collector-Base Breakdown Voltage |                                                       | TEST CONDITIONS!                                |                          | SN55460 |     |      | SN7548         | 0   | T    |     |                                                  |
|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|--------------------------|---------|-----|------|----------------|-----|------|-----|--------------------------------------------------|
|                                                      |                                                       |                                                 |                          |         | MIN | TYP‡ | MAX            | MIN |      | MAX | UNI.                                             |
| TENICEO                                              | Collector-Base Breakdown Voltage<br>Collector-Emitter | lc = 100 μA,                                    | 1E = 0                   |         | 40  |      |                | 40  |      |     | <del>  ∨</del>                                   |
| V(BR)CEO                                             | Breakdown Voltage                                     | IC = 10 mA,                                     | 18 = 0. See N            | lote 8  | 25  |      | ·· ··· · · · · | 25  |      |     | \ \ \ \                                          |
| V(BR)CER                                             | Collector-Emitter<br>Breakdown Voltage                | IC = 100 μA,                                    | R <sub>BE</sub> = 500 11 | ·       | 40  |      |                | 40  |      |     | V                                                |
| VIBRIEBO                                             | Emitter-Base Breakdown Voltage                        | l <sub>E</sub> = 100 μA,                        |                          |         | 5   |      |                | 5   |      |     | <del>                                     </del> |
| hfe (                                                | Static Forward Current<br>Transfer Ratio              | VCE = 3 V,<br>T <sub>A</sub> = 25 C             | IC = 100 mA,             |         | 25  |      |                | 25  |      |     | <b>"</b>                                         |
|                                                      |                                                       | V <sub>CE</sub> = 3 V,<br>T <sub>A</sub> = 25 C | IC = 300 mA,             | See     | 30  |      |                | 30  |      |     | 1                                                |
|                                                      |                                                       | V <sub>CE</sub> = 3 V,<br>T <sub>A</sub> = MIN  | IC = 100 mA,             | Note 8  | 10  |      |                | 20  |      |     |                                                  |
|                                                      |                                                       | VCE = 3 V,<br>TA = MIN                          | IC = 300 mA,             |         | 15  |      |                | 25  |      |     |                                                  |
| VBE                                                  | Base-Emitter Voltage                                  | lg = 10 mA,                                     |                          | See     |     | 0.85 | 1.2            |     | 0.85 | 1   | ├                                                |
|                                                      | College Facility                                      | 1B = 30 mA,                                     |                          | Note 8  |     | 1    | 1.4            |     | 1    | 1.2 | \ \                                              |
| CE(sat)                                              | Collector-Emitter                                     | <sup>1</sup> B = 10 mA,                         |                          | See     |     | 0.25 | 0.5            |     | 0.25 | 0.4 | <del> </del>                                     |
|                                                      | Saturation Voltage                                    | lg = 30 mA,                                     | IC = 300 mA              | Note 8  |     | 0.45 | 0.8            |     | 0.45 | 0.7 | V                                                |

TFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.  $\ddagger_{AII}$  typical values are at  $V_{CC}$  = 5 V,  $T_A$  = 25°C. NOTE 8: These parameters must be measured using pulse techniques,  $t_W$  = 300  $\mu$ s, duty cycle  $\le$  2%.

## switching characteristics, $V_{CC}$ = 5 V, $T_A$ = 25°C

#### TTL gates

| PARAMETER PARAMETER |                          |                         | TEST CONDITIO           | NIC .        | T   |     |     |      |
|---------------------|--------------------------|-------------------------|-------------------------|--------------|-----|-----|-----|------|
| 10                  | Propagation delay time,  |                         | TEST CONDITIO           | M3           | MIN | TYP | MAX | UNIT |
| <sup>t</sup> PLH    | low-to-high-level output |                         | R <sub>L</sub> = 400 Ω, | See Figure 1 |     | 22  |     | ns.  |
| 70                  | Propagation delay time,  | C <sub>L</sub> = 15 ρF, |                         |              |     |     |     |      |
| 1PHL                | high-to-low-level output |                         |                         |              |     | 8   |     | ns   |

#### output transistors

| PARAMETER      |              | TEST CONDITIONS‡                           | T        |     |     | т    |
|----------------|--------------|--------------------------------------------|----------|-----|-----|------|
| <sup>t</sup> d | Delay time   | TEST COMPLITORS:                           | MIN      | TYP | MAX | UNIT |
| tr             | Rise time    | IC = 200 mA, IB(1) = 20 mA, IB(2) = -40 mA |          | 10  |     | ns   |
| t <sub>s</sub> | Storage time | VBE(off) = -1 V, CL = 15 pF, RL = 50 Ω,    | <u> </u> | 16  |     | ns   |
| Tf.            | Fall time    | See Figure 2                               |          | 23  |     | ns.  |
|                |              |                                            |          | 14  |     | ns.  |

<sup>‡</sup>Voltage and current values shown are nominal, exact values vary slightly with transistor paramters.

#### gates and transistors combined

|                  | PARAMETER                                        | TEST CONDITIONS                                                                         | MIN      | TYP |     | T    |
|------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|----------|-----|-----|------|
| TPLH             | Propagation delay time, low-to-high-level output | ·                                                                                       | MIN      |     | MAX | UNIT |
| tPHL .           | Propagation delay time, high-to-low-level output | 10 > 200 0 0 5                                                                          |          | 45  | 65  | ns   |
| <sup>t</sup> TLH | Transition time, low-to-high-level output        | IC ≈ 200 mA, CL = 15 pF,                                                                |          | 35  | 50  | ns.  |
| THL              | Transition time, high-to-low-level output        | R <sub>L</sub> = 50 Ω, See Figure 3                                                     |          | 10  | 20  | ns.  |
|                  |                                                  |                                                                                         |          | 10  | 20  | ns   |
| <b>У</b> ОН      | High-level output voltage after switching        | V <sub>S</sub> = 30 V, I <sub>C</sub> ≈ 300 m.<br>R <sub>BE</sub> = 500 M, See Figure 4 | A, ∨s-10 |     |     | m۷   |

TEXAS INSTRUMENTS
POST OFFICE BOX 5012 - DALLAS TEXAS 75222

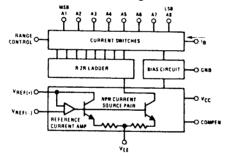
80

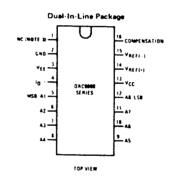
# National Semiconductor

## **Digital-to-Analog Converters**

## DAC0808, DAC0807 DAC0806 8-Bit D/A Converters

#### general description


The DAC0808 series is an 8-bit monolithic digital-to-analog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with  $\pm$ 5V supplies. No reference current (IREF) trimming is required for most applications since the full scale output current is typically  $\pm$ 1 LSB of 255 IREF/256. Relative accuracies of better than  $\pm$ 0.19% assure 8-bit monotonicity and linearity while zero level output current of less than 4  $\mu$ A provides 8-bit zero accuracy for IREF  $\geq$  2 mA. The power supply currents of the DAC0808 series are independent of bit codes, and exhibits essentially constant device characteristics over the entire.supply voltage range.


The DAC0808 will interface directly with popular TTL, DTL or CMOS logic levels, and is a direct replacement for the MC1508/MC1408. For higher speed applications, see DAC0800 data sheet.

#### **teatures**

- Relative accuracy: ±0.19% error maximum (DAC0808)
- Full scale current match: ±1 LSB typ
- 7 and 6-bit accuracy available (DAC0807, DAC0806)
- Fast settling time: 150 ns typ.
- Noninverting digital inputs are TTL and CMOS compatible
- High speed multiplying input slew rate: 8 mA/µs
- Power supply voltage range: ±4.5V to ±18V
- Low power consumption: 33 mW @ ±5V

#### block and connection diagrams







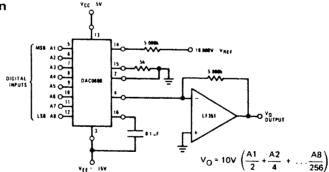



FIGURE 1. ±10V Output Digital to Analog Converte

#### ordering information

| ACCURACY                         | OPERATING TEMPERATURE                                                                                                                                              | ORDER NUMBERS* |           |                                                     |                                                  |                                        |                                  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-----------------------------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------|--|
|                                  | RANGE                                                                                                                                                              | DPACKA         | GE (D16C) | J PACKAG                                            | E (J16A)                                         | N PACKAG                               | E (N16A)                         |  |
| 8-bit<br>8-bit<br>7-bit<br>6-bit | $-55^{\circ}C \le T_{A} \le +125^{\circ}C$ $0^{\circ}C \le T_{A} \le +75^{\circ}C$ $0^{\circ}C \le T_{A} \le +75^{\circ}C$ $0^{\circ}C \le T_{A} \le +75^{\circ}C$ | DAC0808LD      | LM1508D-8 | DAC0808LJ<br>DAC0808LCJ<br>DAC0807LCJ<br>DAC0806LCJ | LM1508J-8<br>LM1408J-8<br>LM1408J-7<br>LM1408J-6 | DAC0808LCN<br>DAC0807LCN<br>DAC0806LCN | LM1408N-<br>LM1408N-<br>LM1408N- |  |

\*Note, Devices may be ordered by using either order number

Applied Output Voltage, VO Reference Current, I<sub>14</sub>
Reference Amplifier Inputs, V14, V15 Power Dissipation (Package Limitation)
Cavity Package
Derate above TA ~ 25° C

Operating Temperature Range DAC0808L

1000 mW 6.7 mW/°C  $\begin{array}{l} -55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C} \\ 0 \leq \text{T}_{\text{A}} \leq +75^{\circ}\text{C} \\ -65^{\circ}\text{C to} +150^{\circ}\text{C} \end{array}$ 

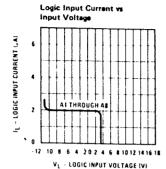
DAC0808LC Series VCC. VEE & Storage Temperature Range

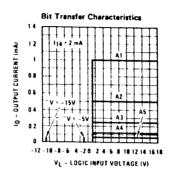
#### electrical characteristics

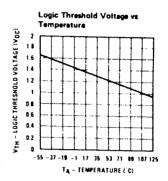
 $(V_{CC} = 5V, V_{EE} = -15 V_{DC}, V_{REF}/R14 = 2 mA, DAC0808L: T_A = -55^{\circ}C$  to +125°C, DAC0808LC, DAC0807LC, DAC0806LC, T\_A = 0°C to +75°C, and all digital inputs at high logic level unless otherwise noted.)

| Relative Accuracy (Error Relative                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| to Full Scale IO)                                             | (Figure 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DAC0808L (LM1508-8),<br>DAC0808LC (LM1408-8)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DAC080/LC (LM1408-7), (Note 1) DAC0806LC (LM1408-6), (Note 1) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Settling Time to Within 1/2 LSB (Includes tp_H)               | Т <sub>Д</sub> = 25°C (Note 2),<br>( <i>Figure 5)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Propagation Delay Time                                        | TA = 25°C, (Figure 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Output Full Scale Current Drift                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ±20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ppm/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Digital Input Logic Levels                                    | (Figure 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · ·                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٧DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                               | /França 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| High Level                                                    | VIH - 5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m. <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Low Level                                                     | VIL = 08V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0 003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Reference Input Bias Current                                  | (Figure 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sub>н</sub> д                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Output Current Range                                          | (Figure 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Output Current                                                | V <sub>REF</sub> = 2 000V,<br>R14 = 1000\$2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | (Figure 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Output Current, All Bits Low                                  | (Figure 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Αμ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Output Voltage Compliance Pin 1 Grounded, VCC Relow ~10V      | E <sub>r</sub> ≤ 0.19%, T <sub>A</sub> 25 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.55, +0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                                                             | (Figure 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.0, +0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Output Current Power Supply<br>Sensitivity                    | -5V ≤ VEE ≤ -16.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mΑ/μs<br>μ <b>Α/V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Power Supply Current (All Bits<br>Low)                        | (Figure 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Proves Constant Nation 19                                     | w ag9a (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| rower Supply Voltage Hange                                    | Γ <sub>A</sub> = 25°C, (Figure 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>D</sub> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power Dissipation                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| All Bits Low                                                  | VCC = 5V, VEE = -5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| All Que Link                                                  | VCC = 5V, VEE = -15V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Air bits riign                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | DACOBOTLC (LM1408-7), (Note 1) DACOBOGLC (LM1408-6), (Note 1) Settling Time to Within 1/2 LSB (Includes tp_H) Propagation Delay Time  Output Full Scale Current Drift Digital Input Logic Levels High Level, Logic "1" Low Level, Logic "0" Digital Input Current High Level Low Level Courrent Bias Current Output Current All Bits Low Output Current, All Bits Low Output Voltage Compliance Pin 1 Grounded, VEE Below —10V Reference Current Stew Rate Output Current Power Supply Sensitivity Power Supply Current (All Bits Low)  Power Supply Voltage Range | DACOBO7LC (LM1408-7), (Note 1) DACOBO6LC (LM1408-6), (Note 1)  Settling Time to Within 1/2 LSB (Includes tpLH)  Propagation Delay Time  Output Full Scale Current Drift  Digital Input Logic Levels High Level, Logic "1" Low Level, Logic "0"  Digital Input Current High Level Low Level Curput Current Range  Output Current  Output Current  Output Current, All Bits Low Output Current, All Bits Low Output Voltage Compliance Pin 1 Grounded, VEE Below = 10V  Reference Current Slew Rate  Output Current Power Supply Sensitivity  Power Supply Current (All Bits Low)  Power Dissipation All Bits Low  VCC = 5V, VEE = -5V VCC = 5V, VEE = -15V  VCC = 5V, VEE = -15V  VCC = 5V, VEE = -15V | DAC0807LC (LM1408-7), (Note 1) DAC0806LC (LM1408 6), (Note 1)  Setting Time to Within 1/2 LSB (Includes tp_H)  Propagation Delay Time   Output Full Scale Current Drift  Digital Input Logic Levels  High Level, Logic "0"  Digital Input Current  High Level  Low Level  Low Level  Output Current Range  (Figure 3)  VEE ≈ 5V  VEE ≈ 15V, TA ≈ 25°C  Output Current  VREF ≈ 2000V, R14 ≈ 100012, (Figure 3)  1 9  Output Current, All Bits Low  Output Current Power Supply  Sensitivity  Power Supply Current (All Bits Low)  Power Supply Voltage Range  TA ≈ 25°C, (Figure 3)  TA ≈ 25°C  (Note 2), (Figure 5)  TA ≈ 25°C, (Figure 3)  1 9  4.5  -5V ≤ VEE ≤ ~16.5V  Sensitivity  Power Supply Voltage Range  TA ≈ 25°C, (Figure 3)  4.5  -4.5  Power Dissipation  All Bits Low  VCC ≈ 5V, VEE ≈ ~15V   DAC0806LC (LM1408-7), (Note 1) DAC0806LC (LM1408-6), (Note 1) Setting Time to Within 1/2 LSB (Includes tpLH) Propagation Delay Time  TA = 25°C (Note 2), (Figure 5)  TA = 25°C, (Figure 5)  30  Output Full Scale Current Drift  Digital Input Logic Levels High Level, Logic "0"  Digital Input Current High Level Low Level, Logic "0"  Digital Input Current High Level Low Level High Level ViH = 5V ViL = 0 8V  Reference Input Bias Current  (Figure 3) VEE = -15V VEE = -5V VEE | DAC0808LC (LM1408-8)   DAC0807LC (LM1408-7), (Note 1)   DAC0806LC (LM1408-7), (Note 1)   DAC0806LC (LM1408-7), (Note 1)   DAC0806LC (LM1408-7), (Note 1)   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78   10.78 |

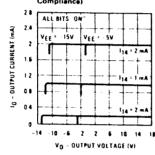
Note 1: All current switches are tested to guarantee at least 50% of rated current.

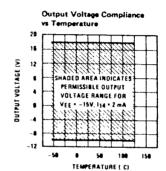

Note 2: All bits switched.


+ MATIERS - GRNBVS

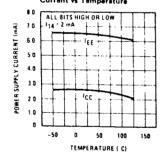

ARTB . Note 3: Range control is not required.

#### typical performance characteristics


VCC = 5V, VEE = -15V,  $T_A = 25^{\circ}C$ , unless otherwise noted



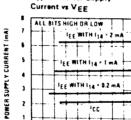


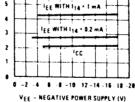

**Output Current vs Output** Voltage (Output Voltage Compliance)



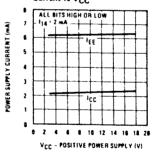



**Typical Power Supply** Current vs Temperature

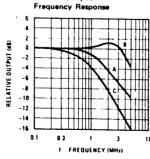



当~せんほう

. MÉTIERS .


.



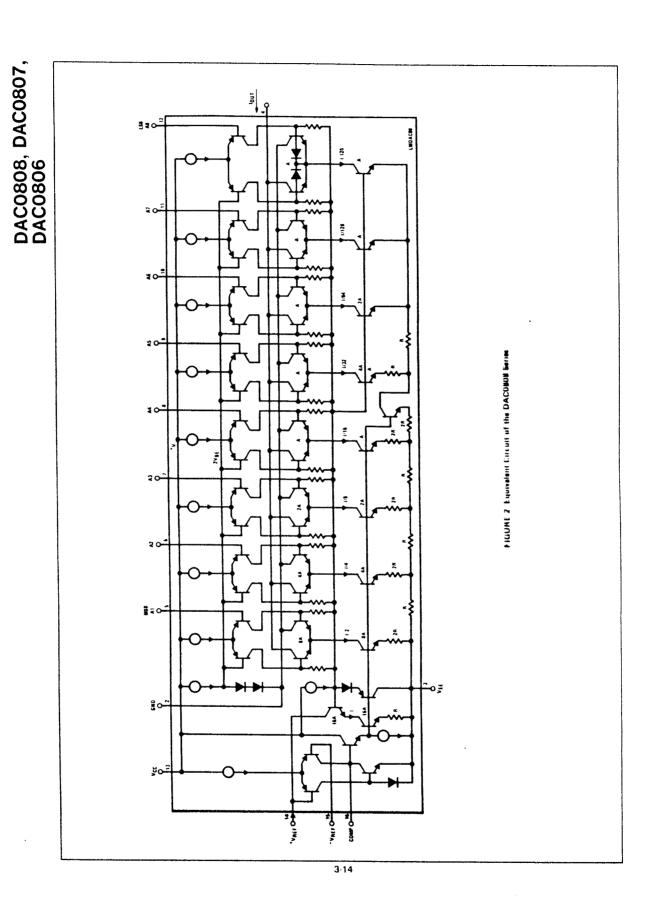

Typical Power Supply



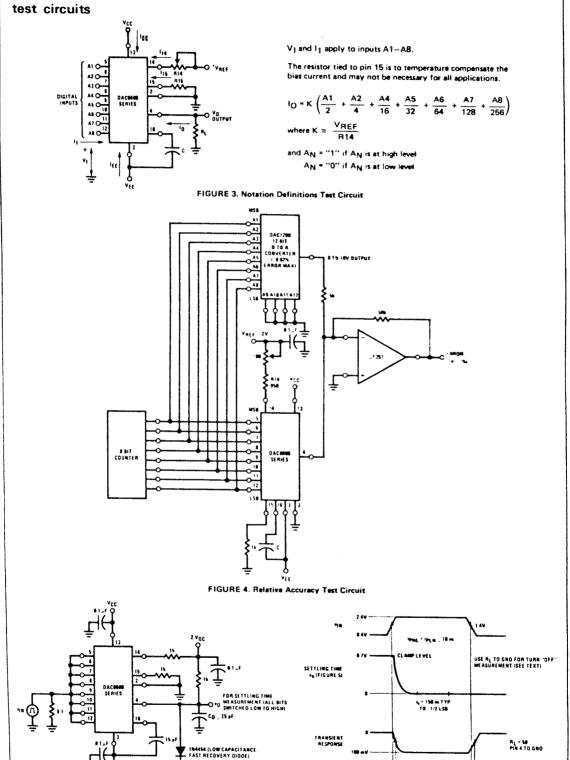
**Typical Power Supply** Current vs V<sub>CC</sub>



Reference Input




Unless otherwise specified: R14 = R15 = 1 k $\Omega$ , C = 15 pF, pin 16 to VEE; R $_{L}$  = 50 $\Omega$ , pin 4 to ground.


Curve A: Large Signal Bandwidth Method of Figure 7, VREF = 2 Vp-p offset 1 V above ground

Curve B: Small Signal Bandwidth Method of Figure 7,  $R_{\perp}$  = 250 $\Omega$ , VREF = 50 mVp-p offset 200 mV

Curve C: Large and Small Signal Bandwidth Method of Figure 9 (no op amp, R<sub>L</sub> = 50Ω), R<sub>S</sub> = 50Ω, VREF = 2V. V<sub>S</sub> = 100 mVp-p central CV. tered at 0V



MANATA CHE ANTE ◆ MATERIA · GRANAVA



PAPETERIS DES ARTS + MÉTISSS - GENSVE

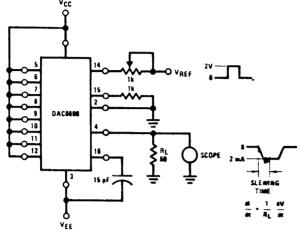



FIGURE 7. Positive VREF

DACOROS

R14 - R15



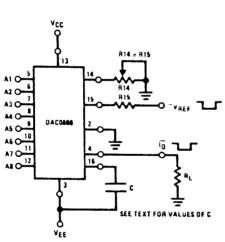



FIGURE 8. Negative VREF

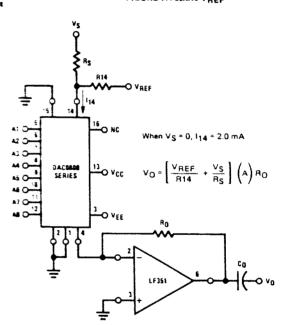



FIGURE 9. Programmable Gain Amplifier or Digital Attenuator Circuit

#### application hints

#### REFERENCE AMPLIFIER DRIVE AND COMPEN-SATION

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, 114, must always flow into pin 14, regardless of the set-up method or reference voltage polarity.

Connections for a positive voltage are shown in Figure 7. The reference voltage source supplies the full current 114. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of 1, 2.5 and 5 k $\Omega$ , minimum capacitor values are 15, 37 and 75 pF. The capacitor may be tied to either VEE or ground, but using VEE increases negative supply rejection.

#### application hints (Continued)

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to VEE on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 4V above the VEE supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a DC reference voltage is used, capacitive bypass to ground is recommended. The 5V logic supply is not recommended as a reference voltage. If a well regulated 5V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to 5V through another resistor and bypassing the junction of the 2 resistors with 0.1  $\mu$ F to ground. For reference voltages greater than 5V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

#### **OUTPUT VOLTAGE RANGE**

The voltage on pin 4 is restricted to a range of -0.6 to 0.5V when VEE = -5V due to the current switching methods employed in the DACO808.

The negative output voltage compliance of the DAC0808 is extended to -5V where the negative supply voltage is more negative than -10V. Using a full-scale current of 1.992 mA and load resistor of 2.5 k $\Omega$  between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980V. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R  $_{\rm L}$  up to  $500\Omega$  do not significantly affect performance, but a 2.5 k $\Omega$  load increases worst-case settling time to 1.2  $\mu s$  (when all bits are switched ON). Refer to the subsequent text section on Settling Time for more details on output loading.

#### **OUTPUT CURRENT RANGE**

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than -7V, due to the increased voltage drop across the resistors in the reference current amplifier.

#### ACCURACY

+ MATIERS

DES ARTS

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full-scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full-scale current. The relative accuracy of the DAC0808 is essentially constant with temperature due to the excellent temperature tracking

of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the DAC0808 has a very low full-scale current drift with temperature.

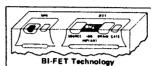
The DAC0808 series is guaranteed accurate to within ±1/2 LSB at a full-scale output current of 1.992 mA. This corresponds to a reference amplifier output current drive to the ladder network of 2 mA, with the loss of 1 LSB (8  $\mu$ A) which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full-scale output current of 1.992 mA. This is an optional step since the DAC0808 accuracy is essentially the same between 1.5 and 2.5 mA. Then the DAC0808 circuits' full-scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accuracy D-to-A converter. 16-bit accuracy moles a total error of  $\pm 1/2$  of one part in 65-536, or =0 00076%, which is much more accurate than the =0.013% specification provided by the DACCROR

#### MULTIPLYING ACCURACY

The DACC808 may be used in the multiplying mode with 8-bit accuracy when the reference current is varied over a range of 256.1. If the reference current in the multiplying mode ranges from 16  $\mu$ A to 4 mA, the additional error contributions are less than 1.6  $\mu$ A. This is well within 8-bit accuracy when referred to full-scale.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the DAC0808 is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a DC reference current is 0.5 to 4 mA.


#### SETTLING TIME

The worst-case switching condition occurs when all bits are switched ON, which corresponds to a low-to-high transition for all bits. This time is typically 150 ns for settling to within  $\pm 1/2$  LSB, for 8-bit accuracy, and 100 ns to 1/2 LSB for 7 and 6-bit accuracy. The turn OFF is typically under 100 ns. These times apply when  $R_L \leq 500\Omega$  and  $C_O \leq 25 \, \mathrm{pF}.$ 

Extra care must be taken in board layout since this is usually the dominant factor in satisfactoy test results when measuring settling time. Short leads, 100  $\mu F$  supply bypassing for low frequencies, and minimum scope lead length are all mandatory.



### **Amplifiers**



## LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers

LF155, LF155A, LF255, LF355, LF355A, LF355B low supply current LF156, LF156A, LF256, LF356A, LF356B wide band LF157, LF157A, LF257, LF357A, LF357B wide band decompensated (AV<sub>MIN</sub> = 5)

#### General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FET Technology). These amplifiers feature low input bias and offset currents, low offset voltage and offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

#### **Advantages**

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance—very low 1 f corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads (10,000 pF) without stability problems
- Internal compensation and large differential input voltage\_capability

#### **Applications**

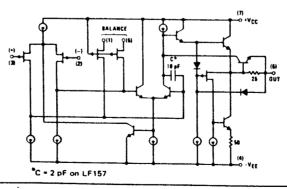
+ METIERS

.

- Precision high speed integrators
- # Fast D/A and A/D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers
- Logarithmic amplifiers

- Photocell amplifiers
- Sample and Hold circuits

#### **Common Features**


(LF155A, LF156A, LF157A)

| <ul> <li>Low input bias current</li> </ul>                     | 30 pA           |
|----------------------------------------------------------------|-----------------|
| <ul> <li>Low input offset current</li> </ul>                   | 3 pA            |
| <ul> <li>High input impedance</li> </ul>                       | $10^{12}\Omega$ |
| <ul> <li>Low input offset voltage</li> </ul>                   | 1 mV            |
| <ul> <li>Low input offset voltage temperature drift</li> </ul> | 3μ <b>V/°</b> C |
| <ul> <li>Low input noise current</li> </ul>                    | 0.01 pA/√Hz     |
| <ul> <li>High common-mode rejection ratio</li> </ul>           | 100 dB          |
| <ul> <li>Large dc voltage gain</li> </ul>                      | 106 dB          |

#### **Uncommon Features**

|   |                                       | LF155A  | LF156A | LF157A<br>(A <sub>V</sub> = 5)* | UNITS  |
|---|---------------------------------------|---------|--------|---------------------------------|--------|
|   | Extremely fast settling time to 0.01% | 4       | 1.5    | 1.5                             | μς     |
|   | Fast slew                             |         |        |                                 |        |
|   | rate                                  | 5       | 12     | 50                              | V/μs   |
| • | Wide gain<br>bandwidth                | 2.5     | 5      | 20                              | MHz    |
| = | Low input noise voltage               | 20<br>e | 12     | 12                              | nV/√Hz |

#### **Simplified Schematic**



9